( 経済学、リンク::::::::::):
NAMs出版プロジェクト: 複利(Compound interest )と フィッシャー利子論
http://nam-students.blogspot.jp/2017/06/compound-interest.html
ゲゼル:減価式貨幣と世界通貨案 1914
http://nam-students.blogspot.jp/2011/12/blog-post_4033.html?m=0
Irving Fisher: Stamp Scrip; 1933 :スタンプ通貨 アーヴィング・フィッシャー (著)
http://nam-students.blogspot.jp/2015/12/irving-fisher-stamp-scrip-1933-2016331.html
世代重複モデル:再考
http://nam-students.blogspot.com/2018/10/overlappinggenerationsmodel.html
http://nam-students.blogspot.jp/2011/12/blog-post_4033.html?m=0
Irving Fisher: Stamp Scrip; 1933 :スタンプ通貨 アーヴィング・フィッシャー (著)
http://nam-students.blogspot.jp/2015/12/irving-fisher-stamp-scrip-1933-2016331.html
モーリス・アレ:世代重複モデル(OLG:overlapping generations model)再考
http://nam-students.blogspot.jp/2016/03/qlgoverlapping-generations-model.html世代重複モデル:再考
http://nam-students.blogspot.com/2018/10/overlappinggenerationsmodel.html
フィッシャーの利子論は複利を重大視しない
長期的な問題とはいえマルサスの人口増加より緊急課題なのに
付録で言及されるが…*
ここにフィッシャーの甘さがある
(ただし後にフィッシャーはゲゼルを評価するようになる)
403:
一つの物価水準から他の物価水準への移動が,破壊作用をなし得るものであり,かつまたなすものであることは,すでにさきに示した通りである。そしてこの破壊作用は,広汎に分散せる遅延と共に追従し来たるものである。その結果,通貨膨張の期間中,利子歩合は累積的に騰貴し,したがって物価水準の高いこの期間末においては,利子歩合はまた高いのである。もしこの新物価水準が持続されるならば,利子歩合は疑うまでもなく早晩正常な状態に立戻るであろう。しかしかようなことの起こるのはまれである。通例価格は頂上に到達してから低落して行く。この低落期間中利子歩合は累積的な下降の圧力を受け,これがために物価低落の期間の終わりまたその近くにおいて,正常以下となる。
493:
この計算方法によれば,苗木の植付けられる年度にあつては,その費用は,例えばその年度の初めに費やされた1ドルの額の労働と,第1年の経過を忍ぶ待期の価値5セントとよりなることがわかる。第2年においても約同額の待期の費用を生じ,以後相続いて各年ごとに生ずるが,待期の費用は複利表の示す通り漸次増加し,最後に14年目において10セントに達し,25年目には15セントに達する。そこで25年間に対する費用総額は3ドルとなり,そしてまたその25年の終わりに,樹木の売却によって植樹者が受取る収益もまた3ドルとなるであろう。したがってもし最初に労働を投入した時から最後に樹木を売却する時までの全期間をとってみるならば,純所得は零となるであろう。この結果は控目に言ってもやや驚くべきものであるが, しかし,次の追加の例が示すような,同一種類の簿記から生ずるある他の結果程のものではない。
- The Theory of Interest: As determined by the impatience to spend income and opportunity to invest it. , 1930. 利子論 フィッシャー方程式 名利子率=実質利子率+期待インフレ率
*
NAMs出版プロジェクト: 浅田彰『逃走論』(1984,1986)☆
http://nam-students.blogspot.jp/2017/02/19841986.html
岩井 はっきり構造的に決まっている。漫才の「ツッコミ」と「ボケ」なん
ですね。(笑)
浅田 「ツッコミ」が「資本家」で「ボケ」が「労働者」だと。
柄谷 でもそこには悲劇性はないわな。(笑)
浅田 まあとにかく、そういう説明が成り立つと思うんですよ。岩井さんが
あえてそれを取らなかったのは「利潤」と「利子」を区別したかったからだ
と思うんです。置塩·森嶋·ローマーの「マルクスの基本定理」というのが
あって、「各産業が正の利潤率をもつような価格体系の存在と搾取率が正に
なるような価値体系の存在は同値である」という。ここで言っている「利潤
率」というのは事実上「利子率」なんですよね。
:182
マルクス『資本論』:メモ及び目次
http://nam-students.blogspot.jp/2011/10/blog-post_29.html?m=0
http://nam-students.blogspot.jp/2011/10/blog-post_29.html?m=0
《ドクター・プライスの思いつき…
「複利を生む貨幣ははじめはゆっくりふえてゆく。しかし、ふえる率はだんだん速くなって
ゆくので、ある期間がたてば、想像もでぎない速さになる。われわれの救世主が生まれた年に
五%の複利で貨し出された1ペニーは、今ではもう、すべて純金から成っている一億五千万個
の地球に含まれているよりももっと大きな額に増大しているであろう。しかし、単利で貸し出
されたとすれば、同じ期間にたった七シリング4と1/2ペンスにしかふえていないであろう。
今日までわが国の政府はその財政を第一の道よりも第二の道によって改善しようとしてきたの
である。」」(『資本論』第三巻 第五篇利子生み資本 第24章「資本関係の外面化」より、
大月書店国民文庫7巻141頁)
s=c(1+z)^2なる数式まで持ち出して複利を批判するマルクスはまさにに二重の態度を取る。
複利で儲けようとする人間を嘲笑するが、その現実を変えようとしないという評論家的態度だ。
複利が実体経済と合わないと言う指摘は正しい。しかし、短期的には複利は現実をそのシステム
にあわせようとして被害者を生む。長期的にも、現代では国家が複利による赤字を拡大させてお
り、これは社会秩序に直結する問題だ。『共産主義者宣言』が一面的なら、『資本論』は悪い意
味で二重の態度を取った書物だ。
複利 - Wikipedia
https://ja.wikipedia.org/wiki/複利
複利(ふくり)とは、複利法によって計算された利子のこと。複利法とは、元金(がんきん)によって生じた利子を次期の元金に組み入れる方式であり、元金だけでなく利子にも次期の利子がつく。したがって、各期の利子が次第に増加していく。投資や借金などでは、雪だるま式に利子が増えていくことになる。重利(じゅうり)とも。
目次
理論
1期末の元利合計(元金と利子を合わせた額)は、次式になる。
- 元利合計 = 元金+元金×利率 = 元金×(1+利率)
2期目には、上の元利合計を新しい元金として、同様に利子がつく。
- 2期末の元利合計 = 元利合計×(1+利率) = 元金×(1+利率)×(1+利率)
したがって、n 期末の元利合計は、次式になる。
- n 期末の元利合計 = 元金×(1+利率)n
解説
たとえば、10,000円を元金として、月利が10%(すなわち 0.1)である場合に、複利法で1か月後の元利合計は11,000円になる。
- 10000+1000=11000
2か月目は、この11,000円を元金として計算する。
- 11000+1100=12100 [1]
3か月目は、この12,100円を元金として計算する。
- 12100+1210=13310
つまり、3か月後には3,310円の利子がつく(1.1×1.1×1.1 = 1.13 = 1.331)。
- これに対して単利法では、3か月後の利子は3,000円であるから、複利法での利子は単利より310円だけ多い。
10か月後には、単利10,000円に対して、複利は15,937円になり、5,937円だけ多い(1.110≒2.5937)。
20か月後には、単利20,000円に対して、複利は57,275円になり、37,275円だけ多い(1.120≒6.7275)。
72の法則
詳細は「72の法則」を参照
72の法則は、複利のとき、預けた(または借りた)金額が何年(または何か月)で元の2倍になるかを概算する方法であり、72を利率(%)で割った値がほぼ正しい期数になる。また逆に、72を期数で割った値がほぼ正しくその期数で2倍になる利率になる。
例1. 年利3%の銀行に預けたとして、何年で2倍になるか。
-
- 72÷3=24 [年] となる。
- 実際には (1+0.03)24≒2.033 であって、24年後には2倍より少し多くなる。
例2. 8年で2倍になる利率はどれだけか。
-
- 72÷8=9 [%] となる。
- 実際には (1+0.09)8≒1.993 であって、9%では2倍より少しだけ足りない。
法律
貸金業法14条および出資法5条6項には、1年分に満たない利息を元本に組み入れる場合が規定されており、複利の約定自体が禁止されていないことは自明であるが、単利の場合と同様に利息制限法および出資法の上限利息の制限を受ける。
また、民法405条は、当事者の約定がなくても、1年以上の利払いの延滞および債権者による催告を要件として、利息を元本に組み入れることができると定めている(法定重利)。これを反対解釈すれば、当事者間に約定がなく、同条項の要件を満たさなければ、当然に利息を元本に組み入れることはできない、即ち、日本民法においては、単利が原則であり、複利とするには当事者間の合意が必要であることを意味している。
期日前の借換え
たとえ単利の借金であっても、期ごとに借換えをすると、実質上の複利返済になってしまう。単利の期末ごとに元利合計額を他から借金して返済することを繰り返せば、実質は複利法で借金したのと同額の利子になる。もし期日前に借換えをすれば、同じ利率であったとしても、利子は複利法よりも高くなる。
まして複利法による借金であって、期日前に借金の元利合計額を他社から借金して返済することを繰り返せば、利子は高くなる。 悪徳業者は借換えをすると利子が安くなると言って借換えを勧めるが、実質上は複利になっているので、借換え後の金利が 1% 程度安くなっても実質上の支払額は減っていないどころか増える場合すらある。 最悪の場合には毎月のように業者間で借換えのたらい回しにされ多重債務に陥る。
注
- ^ 1.1×1.1 = 1.12 = 1.21
関連項目
Compound interest - Wikipedia
https://en.wikipedia.org/wiki/Compound_interest
Compound interest is the addition of interestto the principal sum of a loan or deposit, or in other words, interest on interest. It is the result of reinvesting interest, rather than paying it out, so that interest in the next period is then earned on the principal sum plus previously-accumulated interest. Compound interest is standard in finance and economics.
Compound interest may be contrasted with simple interest, where interest is not added to the principal, so there is no compounding. The simple annual interest rate is the interest amount per period, multiplied by the number of periods per year. The simple annual interest rate is also known as the nominal interest rate (not to be confused with the real, or inflation-adjusted, rate).
Contents
Compounding frequency
The compounding frequency is the number of times per year (or other unit of time) the accumulated interest is paid out, or capitalized (credited to the account), on a regular basis. The frequency could be yearly, half-yearly, quarterly, monthly, weekly, daily (or not at all, until maturity).
For example, monthly capitalization with annual rate of interest means that the compounding frequency is 12, with time periods measured in months.
The effect of compounding depends on:
- The nominal interest rate which is applied and
- The frequency interest is compounded.
Annual equivalent rate
The nominal rate cannot be directly compared between loans with different compounding frequencies. Both the nominal interest rate and the compounding frequency are required in order to compare interest-bearing financial instruments.
To assist consumers compare retail financial products more fairly and easily, many countries require financial institutions to disclose the annual compound interest rate on deposits or advances on a comparable basis. The interest rate on an annual equivalent basis may be referred to variously in different markets as annual percentage rate (APR), annual equivalent rate (AER), effective interest rate, effective annual rate, annual percentage yield and other terms. The effective annual rate is the total accumulated interest that would be payable up to the end of one year, divided by the principal sum.
There are usually two aspects to the rules defining these rates:
- The rate is the annualised compound interest rate, and
- There may be charges other than interest. The effect of fees or taxes which the customer is charged, and which are directly related to the product, may be included. Exactly which fees and taxes are included or excluded varies by country. may or may not be comparable between different jurisdictions, because the use of such terms may be inconsistent, and vary according to local practice.
Examples
- 1,000 Brazilian real (BRL) is deposited into a Brazilian savings account paying 20% per annum, compounded annually. At the end of one year, 1,000 x 20% = 200 BRL interest is credited to the account. The account then earns 1,200 x 20% = 240 BRL in the second year.
- A rate of 1% per month is equivalent to a simple annual interest rate (nominal rate) of 12%, but allowing for the effect of compounding, the annual equivalent compound rate is 12.68% per annum (1.0112 − 1).
- The interest on corporate bonds and government bonds is usually payable twice yearly. The amount of interest paid (each six months) is the disclosed interest rate divided by two and multiplied by the principal. The yearly compounded rate is higher than the disclosed rate.
- Canadian mortgage loans are generally compounded semi-annually with monthly (or more frequent) payments.[1]
- U.S. mortgages use an amortizing loan, not compound interest. With these loans, an amortization schedule is used to determine how to apply payments toward principal and interest. Interest generated on these loans is not added to the principal, but rather is paid off monthly as the payments are applied.
- It is sometimes mathematically simpler, e.g. in the valuation of derivatives, to use continuous compounding, which is the limit as the compounding period approaches zero. Continuous compounding in pricing these instruments is a natural consequence of Itō calculus, where financial derivatives are valued at ever increasing frequency, until the limit is approached and the derivative is valued in continuous time.
Discount instruments
- US and Canadian T-Bills (short term Government debt) have a different convention. Their interest is calculated on a discount basis as (100 − P)/Pbnm,[clarification needed] where P is the price paid. Instead of normalizing it to a year, the interest is prorated by the number of days t: (365/t)×100. (See day count convention).
Mathematics of interest rate on loans
Calculation of compound interest
The total accumulated value, including the principal sum plus compounded interest , is given by the formula: Fv=Pv(r/n)^nt
where:
- P is the original principal sum
- P' is the new principal sum
- r is the nominal annual interest rate
- n is the compounding frequency
- t is the overall length of time the interest is applied (usually expressed in years).
The total compound interest generated is:
Example 1
Suppose a principal amount of $1,500 is deposited in a bank paying an annual interest rate of 4.3%, compounded quarterly.
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 4, and t = 6:
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 4, and t = 6:
So the new principal after 6 years is approximately $1,938.84.
Subtracting the original principal from this amount gives the amount of interest received:
Example 2
Suppose the same amount $1,500 is compounded biennially (every 2 years).
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 1/2 = 0.5 (the interest is compounded every two years), and t = 6:
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 1/2 = 0.5 (the interest is compounded every two years), and t = 6:
So, the balance after 6 years is approximately $1,921.24.
The amount of interest received can be calculated by subtracting the principal from this amount.
The interest is less compared with the previous case, as a result of the lower compounding frequency.
Periodic compounding
The amount function for compound interest is an exponential function in terms of time.
Where:
- = Total time in years
- = Number of compounding periods per year (note that the total number of compounding periods is )
- = Nominal annual interest rate expressed as a decimal. e.g.: 6% = 0.06
- means that nt is rounded down to the nearest integer.
Since the principal is simply a coefficient, it is often dropped for simplicity, and the resulting accumulation function is used instead. Accumulation functions for simple and compound interest are listed below:
Note: A(t) is the amount function and a(t) is the accumulation function.
Continuous compounding
As n, the number of compounding periods per year, increases without limit, we have the case known as continuous compounding, in which case the effective annual rate approaches an upper limit of er − 1, where e is a mathematical constant that is the base of the natural logarithm.
Continuous compounding can be thought of as making the compounding period infinitesimally small,achieved by taking the limit as n goes to infinity. See definitions of the exponential function for the mathematical proof of this limit. The amount after t periods of continuous compounding can be expressed in terms of the initial amount A0 as
Force of interest
As the number of compounding periods reaches infinity in continuous compounding, the continuous compound interest is referred to as the force of interest .
In mathematics, the accumulation functions are often expressed in terms of e, the base of the natural logarithm. This facilitates the use of calculus to manipulate interest formulae.
For any continuously differentiable accumulation function a(t), the force of interest, or more generally the logarithmic or continuously compounded return is a function of time defined as follows:
This is the logarithmic derivative of the accumulation function.
Conversely:
- (since ; this can be viewed as a particular case of a product integral).
When the above formula is written in differential equation format, then the force of interest is simply the coefficient of amount of change:
For compound interest with a constant annual interest rate r, the force of interest is a constant, and the accumulation function of compounding interest in terms of force of interest is a simple power of e:
- or
The force of interest is less than the annual effective interest rate, but more than the annual effective discount rate. It is the reciprocal of the e-folding time. See also notation of interest rates.
A way of modeling the force of inflation is with Stoodley's formula: where p, r and s are estimated.
Compounding basis
To convert an interest rate from one compounding basis to another compounding basis, use
where r1 is the interest rate with compounding frequency n1, and r2 is the interest rate with compounding frequency n2.
When interest is continuously compounded, use
where is the interest rate on a continuous compounding basis, and r is the stated interest rate with a compounding frequency n.
Monthly amortized loan or mortgage payments
The interest on loans and mortgages that are amortized—that is, have a smooth monthly payment until the loan has been paid off—is often compounded monthly. The formula for payments is found from the following argument.
Exact formula for monthly payment
An exact formula for the monthly payment () is
or equivalently
Where:
- = monthly payment
- = principal
- = monthly interest rate
- = number of payment periods
This can be derived by considering how much is left to be repaid after each month.
The Principal remaining after the first month is
The Principal remaining after the first month is
i.e. the initial amount has increased less the payment.
If the whole loan is repaid after one month then
If the whole loan is repaid after one month then
- , so
After the second month is left, so
If the whole loan was repaid after two months,
- , so
This equation generalises for a term of n months, . This is a geometric series which has the sum
which can be rearranged to give
This formula for the monthly payment on a U.S. mortgage is exact and is what banks use.
Spreadsheet Formula
In spreadsheets, the PMT() function is used. The syntax is:
- PMT( interest_rate, number_payments, present_value, future_value,[Type] )
See Excel, Mac Numbers, Libreoffice, Open Office for more details.
For example, for interest rate of 6% (0.06/12), 25 years * 12 p.a., PV of $150,000, FV of 0, type of 0 gives:
- = PMT( 0.06/12, 25 * 12, 150000, 0, 0 )
- = $966.45
Approximate formula for monthly payment
A formula that is accurate to within a few percent can be found by noting that for typical U.S. note rates ( and terms =10–30 years), the monthly note rate is small compared to 1: so that the which yields a simplification so that
which suggests defining auxiliary variables
.
is the monthly payment required for a zero interest loan paid off in installments. In terms of these variables the approximation can be written
The function is even: implying that it can be expanded in even powers of .
It follows immediately that can be expanded in even powers of plus the single term:
It will prove convenient then to define
so that which can be expanded:
where the ellipses indicate terms that are higher order in even powers of . The expansion
is valid to better than 1% provided .
Example of mortgage payment
For a $10,000 mortgage with a term of 30 years and a note rate of 4.5%, payable yearly, we find:
which gives
so that
The exact payment amount is so the approximation is an overestimate of about a sixth of a percent.
History
Compound interest was once regarded as the worst kind of usury and was severely condemned by Roman law and the common laws of many other countries.[2]
The Florentine merchant Francesco Balducci Pegolotti provided a table of compound interest in his book Pratica della mercatura of about 1340. It gives the interest on 100 lire, for rates from 1% to 8%, for up to 20 years.[3] The Summa de arithmetica of Luca Pacioli(1494) gives the Rule of 72, stating that to find the number of years for an investment at compound interest to double, one should divide the interest rate into 72.
Richard Witt's book Arithmeticall Questions, published in 1613, was a landmark in the history of compound interest. It was wholly devoted to the subject (previously called anatocism), whereas previous writers had usually treated compound interest briefly in just one chapter in a mathematical textbook. Witt's book gave tables based on 10% (the then maximum rate of interest allowable on loans) and on other rates for different purposes, such as the valuation of property leases. Witt was a London mathematical practitioner and his book is notable for its clarity of expression, depth of insight and accuracy of calculation, with 124 worked examples.[4][5]
Jacob Bernoulli discovered the constant in 1683 by studying a question about compound interest.
Trivia
Albert Einstein is apocryphally quoted as saying "Compound interest is the eighth wonder of the world. He who understands it, earns it ... he who doesn't ... pays it.[6]
See also
References
- ^ http://laws.justice.gc.ca/en/showdoc/cs/I-15/bo-ga:s_6//en#anchorbo-ga:s_6 Interest Act (Canada), Department of Justice. The Interest Act specifies that interest is not recoverable unless the mortgage loan contains a statement showing the rate of interest chargeable, "calculated yearly or half-yearly, not in advance." In practice, banks use the half-yearly rate.
- ^ This article incorporates text from a publication now in the public domain: Chambers, Ephraim, ed. (1728). "article name needed". Cyclopædia, or an Universal Dictionary of Arts and Sciences (first ed.). James and John Knapton, et al.
- ^ Evans, Allan (1936). Francesco Balducci Pegolotti, La Pratica della Mercatura. Cambridge, Mass. pp. 301–2.
- ^ Lewin, C G (1970). "An Early Book on Compound Interest - Richard Witt's Arithmeticall Questions". Journal of the Institute of Actuaries. 96 (1): 121–132.
- ^ Lewin, C G (1981). "Compound Interest in the Seventeenth Century". Journal of the Institute of Actuaries. 108 (3): 423–442.
- ^ http://quoteinvestigator.com/2011/10/31/compound-interest/
0 件のコメント:
コメントを投稿