The compounding frequency is the number of times per year (or other unit of time) the accumulated interest is paid out, or capitalized (credited to the account), on a regular basis. The frequency could be yearly, half-yearly, quarterly, monthly, weekly, daily (or not at all, until maturity).
For example, monthly capitalization with annual rate of interest means that the compounding frequency is 12, with time periods measured in months.
The effect of compounding depends on:
- The nominal interest rate which is applied and
- The frequency interest is compounded.
The nominal rate cannot be directly compared between loans with different compounding frequencies. Both the nominal interest rate and the compounding frequency are required in order to compare interest-bearing financial instruments.
To assist consumers compare retail financial products more fairly and easily, many countries require financial institutions to disclose the annual compound interest rate on deposits or advances on a comparable basis. The interest rate on an annual equivalent basis may be referred to variously in different markets as annual percentage rate (APR), annual equivalent rate (AER), effective interest rate, effective annual rate, annual percentage yield and other terms. The effective annual rate is the total accumulated interest that would be payable up to the end of one year, divided by the principal sum.
There are usually two aspects to the rules defining these rates:
- The rate is the annualised compound interest rate, and
- There may be charges other than interest. The effect of fees or taxes which the customer is charged, and which are directly related to the product, may be included. Exactly which fees and taxes are included or excluded varies by country. may or may not be comparable between different jurisdictions, because the use of such terms may be inconsistent, and vary according to local practice.
Calculation of compound interestEdit
The total accumulated value, including the principal sum plus compounded interest , is given by the formula: Fv=Pv(r/n)^nt
where:
- P is the original principal sum
- P' is the new principal sum
- r is the nominal annual interest rate
- n is the compounding frequency
- t is the overall length of time the interest is applied (usually expressed in years).
The total compound interest generated is:
Example 1Edit
Suppose a principal amount of $1,500 is deposited in a bank paying an annual interest rate of 4.3%, compounded quarterly.
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 4, and t = 6:
So the new principal after 6 years is approximately $1,938.84.
Subtracting the original principal from this amount gives the amount of interest received:
Example 2Edit
Suppose the same amount $1,500 is compounded biennially (every 2 years).
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 1/2 = 0.5 (the interest is compounded every two years), and t = 6:
So, the balance after 6 years is approximately $1,921.24.
The amount of interest received can be calculated by subtracting the principal from this amount.
The interest is less compared with the previous case, as a result of the lower compounding frequency.
Periodic compoundingEdit
The amount function for compound interest is an exponential function in terms of time.
Where:
- = Total time in years
- = Number of compounding periods per year (note that the total number of compounding periods is )
- = Nominal annual interest rate expressed as a decimal. e.g.: 6% = 0.06
- means that nt is rounded down to the nearest integer.
Since the principal is simply a coefficient, it is often dropped for simplicity, and the resulting accumulation function is used instead. Accumulation functions for simple and compound interest are listed below:
Note: A(t) is the amount function and a(t) is the accumulation function.
Continuous compoundingEdit
As n, the number of compounding periods per year, increases without limit, we have the case known as continuous compounding, in which case the effective annual rate approaches an upper limit of er − 1, where e is a mathematical constant that is the base of the natural logarithm.
Continuous compounding can be thought of as making the compounding period infinitesimally small,achieved by taking the limit as n goes to infinity. See definitions of the exponential function for the mathematical proof of this limit. The amount after t periods of continuous compounding can be expressed in terms of the initial amount A0 as
Force of interestEdit
As the number of compounding periods reaches infinity in continuous compounding, the continuous compound interest is referred to as the force of interest .
In mathematics, the accumulation functions are often expressed in terms of e, the base of the natural logarithm. This facilitates the use of calculus to manipulate interest formulae.
Conversely:
- (since ; this can be viewed as a particular case of a product integral).
When the above formula is written in differential equation format, then the force of interest is simply the coefficient of amount of change:
For compound interest with a constant annual interest rate r, the force of interest is a constant, and the accumulation function of compounding interest in terms of force of interest is a simple power of e:
- or
A way of modeling the force of inflation is with Stoodley's formula: where p, r and s are estimated.
Compounding basisEdit
To convert an interest rate from one compounding basis to another compounding basis, use
where r1 is the interest rate with compounding frequency n1, and r2 is the interest rate with compounding frequency n2.
where is the interest rate on a continuous compounding basis, and r is the stated interest rate with a compounding frequency n.
Monthly amortized loan or mortgage paymentsEdit
The interest on loans and mortgages that are amortized—that is, have a smooth monthly payment until the loan has been paid off—is often compounded monthly. The formula for payments is found from the following argument.
Exact formula for monthly paymentEdit
An exact formula for the monthly payment () is
or equivalently
Where:
- = monthly payment
- = principal
- = monthly interest rate
- = number of payment periods
This can be derived by considering how much is left to be repaid after each month.
The Principal remaining after the first month is
i.e. the initial amount has increased less the payment.
If the whole loan is repaid after one month then
- , so
After the second month is left, so
If the whole loan was repaid after two months,
- , so
This equation generalises for a term of n months, . This is a geometric series which has the sum
which can be rearranged to give
This formula for the monthly payment on a U.S. mortgage is exact and is what banks use.
Spreadsheet FormulaEdit
In spreadsheets, the PMT() function is used. The syntax is:
- PMT( interest_rate, number_payments, present_value, future_value,[Type] )
For example, for interest rate of 6% (0.06/12), 25 years * 12 p.a., PV of $150,000, FV of 0, type of 0 gives:
- = PMT( 0.06/12, 25 * 12, 150000, 0, 0 )
- = $966.45
Approximate formula for monthly paymentEdit
A formula that is accurate to within a few percent can be found by noting that for typical U.S. note rates ( and terms =10–30 years), the monthly note rate is small compared to 1: so that the which yields a simplification so that
which suggests defining auxiliary variables
.
is the monthly payment required for a zero interest loan paid off in installments. In terms of these variables the approximation can be written
The function is even: implying that it can be expanded in even powers of .
It follows immediately that can be expanded in even powers of plus the single term:
It will prove convenient then to define
so that which can be expanded:
where the ellipses indicate terms that are higher order in even powers of . The expansion
is valid to better than 1% provided .
Example of mortgage paymentEdit
For a $10,000 mortgage with a term of 30 years and a note rate of 4.5%, payable yearly, we find:
which gives
so that
The exact payment amount is so the approximation is an overestimate of about a sixth of a percent.
0 Comments:
コメントを投稿
<< Home