土曜日, 9月 15, 2018

ヴォルテラ関連:Theory of Oscillations Aleksandr AleksandrovichAndronov, C. E. Chaikin University Microfilms, 1979 - 358 ページ


参考:
グッドウィン関連
https://nam-students.blogspot.com/2019/05/richard-murphey-goodwin-1913.html


Lotka Volterra

Lotka Volterra Model @ " BIOLOGY CONCEPTS " where biology meets technology.



Theory of oscillations, by A.A. Andronow and C.E. Chaikin

Khaikin, Semen Emmanuilovich,Lefschetz, Solomon, 1884-1972

詳細情報


Theory of Oscillations

前表紙


p.99

森嶋がマルサスの比喩として採用
全集3,317頁


volterra


This example due to Volterra concerns the coexistence of two types of animals, for example two types of fishes. The first type feeds upon the products of the medium which we assume are always present in sufficient quantity. The second type feeds exclusively upon fishes of the first type. The numbers of each type are of course integers and can vary only by jumps, but to apply our general methods we shall consider them as continuous functions of time. Designate by Ni,Nz the numbers of animals of the first and second types. We assume that, if the first type existed alone, the number of animals would continually grow with a velocity proportional to their number. Thus ei > 0. The growth coefficient *i depends upon the mortality and the birth rates. If the second species existed alone, it would progressively starve out. For this type a natural law is «2 > 0. Assume now that both species live together. Then clearly ei will become smaller as N* becomes larger. We shall make the simplest possible assumption, namely, that ci decreases proportionally to N*. Similarly we may assume that e 2 varies proportionally to JVi. As a consequence we may write where ei, c 2 , 71, and 72 are all positive constants. Multiplying the first equation by 72 and the second by 71 and adding, we obtain 72#1 + 7l#2 = €172^1 ~ €271^2-Multiplying the first equation by ej/JVi and the second by ci/JVa and adding, we have €2 —Nl + €1 —# 2 = —€271^2 + NON-LINEAR CONSERVATIVE SYSTEMS Y |CH.


Vito Volterra
ヴィト・ヴォルテラ(Vito Volterra、1860年5月3日 -  1940年10月11日) は、イタリア数学者物理学者である。数学の分野では解析学に多くの業績を残し積分方程式ヴォルテラ方程式の名が残っている他、結晶の転位の概念を導入し、生態学に数学の手法を用いて競争のある環境での生物の個体数を解析するロトカ=ヴォルテラの方程式などに名前を残している。
教皇領アンコーナの貧しい家に生まれた。数学の才能を示し、ピサ大学にエンリコ・ベッティ(Enrico Betti)のもとで学び、1883年力学の教授になった。積分方程式を研究し、1930年に"Theory of functionals and of Integral and Integro-Differential Equations"(英題)を著した。
1892年トリノ大学の力学の教授、1900年にローマ大学の数理物理学の教授になった。ヴォルテラはイタリア統一運動(リソルジメント)の完成時期に育ち、ベッティとともに統一運動の協調者となった。教皇領がイタリア王国に併合されると、1905年には王国の議員に選ばれた。同じ1905年、結晶中の転位の理論を初めて発表した。第一次世界大戦が始まると、50代になっていたにもかかわらずイタリア陸軍に参加し、ジュリオ・ドゥーエのもとで気球の開発を行い、可燃性の水素ではなく不活性なヘリウムを使うアイデアを出し、気球の製作を指導した。
戦後は生物学に数学的手法を用いる研究を始めた。非線形方程式をもちいて人口問題を解析したピエール=フランソワ・フェルフルストの仕事に次ぐもので、最も有名な成果は競争のある環境での生物の個体数を解析したロトカ=ヴォルテラの方程式である。
1922年にムッソリーニに反対する党派に属し、1931年に大学教授の座を追われた。その後、主に海外で暮らし、死の直前にローマに戻った。
ロトカ・ヴォルテラの方程式(ロトカ・ヴォルテラのほうていしき、英語:Lotka-Volterra equations)とは、生物の捕食-被食関係による個体数の変動を表現する数理モデルの一種。2種の個体群が存在し、片方が捕食者、もう片方が被食者のとき、それぞれの個体数増殖速度を二元連立非線形常微分方程式系で表現する。ロトカ・ヴォルテラの捕食式ロトカ・ヴォルテラ捕食系ロトカ-ヴォルテラの捕食者-被食者モデルなどとも呼ばれる[1][2][3]
具体的には以下の方程式で表される[4]
ここで x は被食者の個体数、 y は捕食者の個体数、t は時間をあらわし、4つの係数 abcd は正の実数のパラメータである。
被食者と捕食者の個体数変動パターンの一つの例として、被食者が自然増殖して増えていくとそれを餌とする捕食者も増殖し、捕食者が増殖したことによって被食頻度が増えて被食者が減少し、被食者が減少したことによってそれを餌とする捕食者も減少し、捕食者が減少したことによって被食者の自然増殖数が被食頻度を上回って被食者が増え、そして最初に戻り…、このような形で被食者と捕食者が交互に増減し続けることが考えられる[1][5]。ロトカ・ヴォルテラの方程式は、このような個体数の周期的な増減の様子を示すことができる簡素で基礎的なモデルとなっている[6]
名称は、この方程式をそれぞれ独立発案したアメリカの数学者アルフレッド・ロトカとイタリアの数学者ヴィト・ヴォルテラに由来する[7]。ロトカは1910年に化学物質濃度の変動を説明するために[8][9]、ヴォルテラは1926年にアドリア海の魚数の変動を説明するために発案した[10]

ロトカ・ヴォルテラ方程式の解の一例。縦軸は個体数、横軸は時間。捕食者(Predatori、青)と被食者(Prede、赤)の個体数変動の位相は一般にずれており、捕食者が増加すると、急速に被食者が減少し、さらに捕食者が減少する、という時間変化を示す。

式の導出と前提条件編集

被食者の増殖速度編集


トラから逃げるイノシシ
モデルの連立方程式内の
{\displaystyle {\frac {dx}{dt}}=ax-bxy}
は被食者の個体数増殖速度 dx/dt を表している。上記の式は、以下のような生態学的な前提条件から導出される。
まず、捕食者が存在しない場合を仮定すると、被食者の個体数 x は順調に自然増していくと考えられる。この自然増は、マルサスモデルのようにその個体数に比例して増殖速度が増え、制限なく指数関数的に増殖すると仮定する[11]。すなわち、被食者にとっての餌は不足することなく十分あるような環境にあると仮定する[12]。これを表しているのが、右辺第一項 ax である[13]
しかし、捕食者が存在する場合、被食者の個体数は捕食によって減少し、捕食者の存在は被食者増殖速度を抑制する効果を持つ。よって、捕食者数 y に比例して被食者増殖速度 dx/dt が減少すると仮定できる[14]。またさらに、捕食者がランダムに被食者を探索しているとすれば、被食者個体数が多いほど出会う割合が高まると考えられる[4]。よって、被食者増殖速度は被食者個体数にも比例して減少すると仮定できる[15]。これを表しているのが、右辺第二項 −bxy である[13]。このような、それぞれの個体数の単純な積で個体数増殖速度への影響を表すことを、質量作用の法則や質量作用の仮定と呼ぶ[16]。ロトカ・ヴォルテラの方程式は、この原則を基礎としている[17]

捕食者の増殖速度編集

捕食者の個体数増殖速度 dy/dt は
{\displaystyle {\frac {dy}{dt}}=cxy-dy}
と表される。上記の式は、以下のような生態学的な前提条件から導出される。
まず、被食者が存在しない場合を考える。被食者にとっての餌はこの方程式系に現れる変数とは別に常に十分あると仮定したが、捕食者にとっての餌は被食者のみとする[18]。よって、被食者が存在しないことは食糧が尽きたことと同じであり、捕食者の死亡率は出産率を上回り、捕食者の個体数 y は減少の一途を辿ることになる。この減少の仕方も、被食者の自然増のように個体数が多ければ多いほど減少速度が大きくなる、すなわち個体数 y に減少速度 dy/dt が比例すると仮定する[11]。これを表しているのが、右辺第二項 −dy である[13]
そして、捕食者が増える速度は、捕食に成功した回数に比例すると考えられる[19]。捕食による被食者減少速度が −bxy と仮定されたように、捕食による捕食者増殖速度も同じ理屈から被食者数 x と捕食者数 y に比例するといえる。これを表しているのが、右辺第一項 cxy である[15]

個体数の振る舞い編集

このロトカ・ヴォルテラ方程式を解析的に解いて x と y の t に関する明示的な解を得ることはできない[20]。しかし、以下のような解の挙動を分析し、それぞれの個体数がどのように振る舞うかを知ることができる。

平衡点編集


ロトカ・ヴォルテラ方程式における2つの平衡点
どのようなときに、個体数 xy が増えも減りもしない、時間 t の経過によらず全く変化しない状態になるかについて考える。これは、方程式の dx/dt と dy/dt が 0 ということなので、次のような式が得られる。
{\displaystyle x(a-by)=0}
{\displaystyle y(cx-d)=0}
この式を満たす xy の組み合わせは
{\displaystyle x=0,\ y=0}
{\displaystyle x={\frac {d}{c}},\ y={\frac {a}{b}}}
という2組である[21]xy がこれら2組の値をとるとき、その xy の値は時間に関わらず一定となる。このような点を平衡点と呼ぶ[22]x = 0, y = 0 の平衡点は、捕食者も被食者も全滅してしまった状態である[21]。一方、x = d/cy = a/b の平衡点では、捕食者・被食者ともにある個体数で共存する状態となっている[19]
これらの平衡点から xy の状態点がわずかにずれて与えられるときに、状態点が時間発展によって平衡点に収束するのか、それとも離れていくのかを特徴づける安定性は、次のように判別できる。2次以上の項が無視できるほどズレが小さいとすれば、平衡点 (0, 0) 近傍で系は次のように表すことができる[23]
{\displaystyle {\frac {dx}{dt}}=ax}
{\displaystyle {\frac {dy}{dt}}=-dy}
これを行列表記すると、
{\displaystyle {\begin{pmatrix}{\frac {dx}{dt}}\\{\frac {dy}{dt}}\end{pmatrix}}={\begin{pmatrix}a&0\\0&-d\end{pmatrix}}{\begin{pmatrix}x\\y\end{pmatrix}}}
となる。
{\displaystyle A={\begin{pmatrix}a&0\\0&-d\end{pmatrix}}}
と置いたとき、A の固有値は a と −d となるので、正と負の固有値を持つことから平衡点 (0, 0) は鞍点となっている[24]。また、少なくとも1つの固有値は正であることから、指数関数的にズレが増加する不安定な平衡点である[23]
平衡点 (d/ca/b) についても同様に、 平衡点近傍で系を次のように表すことができる[25]
{\displaystyle {\begin{pmatrix}{\frac {dx}{dt}}\\{\frac {dy}{dt}}\end{pmatrix}}={\begin{pmatrix}0&-{\frac {bc}{d}}\\{\frac {ad}{b}}&0\end{pmatrix}}{\begin{pmatrix}x\\y\end{pmatrix}}}
固有値は {\displaystyle \pm i{\sqrt {ad}}} となる[26]。ここで i は虚数単位で、固有値は複素共役の純虚数となっており、平衡点 (d/ca/b) は渦心点となっている[27]。よって平衡点近傍の限りにおいては、平衡点周りで状態点が近づきも離れもしない、中立安定な平衡点となる[28]

アイソクライン法による概略編集

x と y を変数とする平面(相平面)上で、dx/dt = 0 または dy/dt = 0 を満たす直線に注目することで、個体数がどのような振る舞いを起こしているかの概略を知ることができる。このような手法をアイソクライン法等傾斜線法と呼ぶ[29][30]
相平面で横軸を x、縦軸を y とする。現実の生物では個体数は正の値であるので、x と y の値が正である相平面の第一象限が興味の対象となる[31]。相平面上では、dx/dt = 0 を満たす直線とは y = a/b と x = 0 の直線であり、dy/dt = 0 を満たす直線とは x = d/c と y = 0 の直線である[19]。このような dx/dt = 0 または dy/dt = 0 を満たす直線を アイソクライン等傾斜線と呼ぶ[32][21]。前者の直線上では dx/dt = 0 であるから、解曲線がこの直線を通るとき、x の値は変化せず、y の値のみが変化する。よって、解曲線は直線を上下方向(y軸方向)にだけ通過する。そのため、この直線を傾き無限大のアイソクラインと呼ぶ[33]。一方、後者の直線上では dy/dt = 0 であるから、同じ理屈から解曲線はこの直線を左右方向(x軸方向)にだけ通過する。そのため、この直線を傾きゼロのアイソクラインと呼ぶ[33]
相平面に y = a/b の水平線と x = d/c の鉛直線を描くと、平衡点 (d/ca/b) で2つの直線は交わり、相平面は4つの領域に分類される。y = a/bの直線より上側の領域では、dx/dt の値は常に負となっている。一方、下側の領域は dx/dt の値は常に正となる[34]。ここで、dx/dt の値が正ということは x の値が増加している状態であり、負ということは x の値が減少している状態である[35]。よって、方程式の解の曲線は、ya/b の直線より上側の領域では左向きに進み、下側の領域では右向きに進むことが予測できる[36]
また同様に、x = d/c の直線より左側の領域では dy/dt の値は常に負で、右側の領域は dy/dt の値は常に正となる[34]。これによって上記と同じように、方程式の解の曲線は、x = d/c の直線より左側の領域では下向きに進み、右側の領域では上向きに進むことが予測できる[36]。これらを組み合わせると、解の曲線は、平衡点 (d/ca/b) を中心にして反時計回りに回転する軌道となっていることが明らかになる[34]
1) 解曲線は、y = a/b の直線より上側領域では左向きに進み、下側領域では右向きに進む
2) 解曲線は、x = d/c の直線より左側領域では下向きに進み、右側領域では上向きに進む
3) 解曲線は、平衡点 (d/ca/b) を中心にして反時計回りに回転する軌道となる

保存量編集

ロトカ・ヴォルテラの方程式は力学系における保存系に該当し、保存量と呼ばれる量を持つ[23]。式から微分 dx/dy を求めると、
{\displaystyle {\frac {dx}{dy}}={\frac {{dx}/{dt}}{{dy}/{dt}}}={\frac {ax-bxy}{cxy-dy}}}
となる。この変数分離形は
{\displaystyle {\frac {cx-d}{x}}dx={\frac {a-by}{y}}dy}
となり、両辺を積分して
{\displaystyle H=cx+by-d\log x-a\log y}
が得られる[37]。ここで、log は自然対数である。右辺の H は一定の値を取る定数である。この式の意味は、時間経過に従って x と y が色々な値に変化しても、上式で与えられる H の値は常に同じに保たれるということである[38]。このような量は保存量や積分不変量と呼ばれ、保存量を持つ系は保存系と呼ばれる[38]。実際に H を t で微分すると、dH/dt = 0 となり、H が定数であることが確認できる[39][注釈 1]。平衡点 (d/ca/b) で H は最小値を取り、その値は
{\displaystyle H_{min}=a+d-a\log \left({\frac {a}{b}}\right)-d\log \left({\frac {d}{c}}\right)}
となる[40]H − Hmin はこの系におけるリアプノフ関数でもある[41]

解曲線と個体数振動編集


解曲線は平衡点 (d/ca/b) を周回する閉曲線となっており、1つの閉曲線が一意の保存量を持つ。初期値によってどの閉曲線となるかが決定される

x-y相平面に高さ軸 H を加え、保存量 Hと各閉曲線の関係を3次元的に示した図
上記のアイソクライン法による解析だけでは、解曲線の形状は確定しない。解曲線は、平衡点 (d/ca/b) を中心に反時計回りに回転していることは分かったが、平衡点を中心としてそこから離れていく渦巻形状なのか、逆に平衡点へ近づいていく渦巻形状なのか、あるいは円や楕円のように一周して元の点に戻る閉曲線なのか、などの可能性がある[42]。ロトカ・ヴォルテラの方程式の解は、これらの中の閉曲線に該当し、相平面の第一象限上で解曲線は平衡点 (d/ca/b) を中心にして一周する閉じた軌道を描く。これは、前述の保存量 H の存在などから証明される[41]
解曲線の形状は、純粋な円や楕円というよりは卵のような形となっている[43]。どの大きさの軌道を取るかは、被食者 x と捕食者 y の初期値 x0y0 によって決まる[42]。保存量 H の値は初期値 x0y0 によって決まり、H の各値に1つの閉曲線が対応する[37]。さらに、x と y の1周期中の平均量を計算すると、それらの値は、それぞれの平衡点 d/c と a/b に一致する[44]

縦軸は個体数、横軸は時間で、捕食者(青)と被食者(赤)の個体数変動の時間変化を示している
解曲線が閉じた曲線であることは、被食者と捕食者の個体数は一定周期で振動していることも意味する[45]。個体数の時間発展波形は複雑な形状となる[46]。捕食者と被食者の個体数変動の位相は1/4周期ほどずれており、
  1. 被食者増加後に、捕食者増加
  2. 捕食者増加後に、被食者減少
  3. 被食者減少後に、捕食者減少
  4. 捕食者減少後に、被食者増加
という変動の繰り返しを示す[36]
個体数の範囲を平衡点近傍に限り、線形安定解析によって近似的な解析を行えば、それぞれの個体数変動の振動数を得ることもできる[47]。このときの x と y は、上記の保存量 H と同じように、次のような関係で表される[48]
{\displaystyle C={\frac {a^{2}c^{2}}{b^{2}}}x^{2}+ady^{2}.}
ここで、C は一定値である。また、それぞれの個体数変動の振動数 ω あるいは周期 T は
{\displaystyle \omega ={\sqrt {ad}},\quad T={\frac {2\pi }{\sqrt {ad}}}}
で与えられる[25][49]

安定性編集

前述のとおり、点 (d/ca/b) は中立安定な平衡点となっている。その周りに存在し得る軌道も初期値によって一つに決定され、一定の閉曲線を保ち続ける。すなわち、平衡点以外の軌道も、そこから離れも近づきもしない状態となっている。被食者も捕食者も絶滅することはなく、一方で、どちらの個体数も際限なく増え続けるということもない[50]
これは、系の外部から小さな乱れが加わった場合には、元の軌道から離れ、元に戻らないことも意味している。このような性質を「構造的に不安定」などという[43]。現実にある多くの系を考えると、構造的に不安定であることは非現実的であることも多い[51][52]。そのためより現実に合うようにモデルの改善が模索され、例えば、大域的に安定なリミットサイクルとなるようにモデルの修正がされる[53][54]

実際の生物における例編集

ダンコナとヴォルテラの研究編集


ヴィト・ヴォルテラ (Vito Volterra)
イタリアの生態学者ウンベルト・ダンコナ(Umberto D'Ancona) は、漁業操業が低下した第一次世界大戦中に食用魚よりもサメなどの軟骨魚の年間漁獲率が増加したことに疑問を持った[55]。これについてヴィト・ヴォルテラに相談を持ち掛け、ヴォルテラがこの現象を説明するためのモデル作成に取り組んだことが、ヴォルテラがロトカ・ヴォルテラの方程式を発案したきっかけである[56][55]
ヴォルテラは、食用魚が被食者、軟骨魚が捕食者としてモデル(ロトカ・ヴォルテラの方程式)を作成した[57]。上記で説明したように、被食者の平均個体数は d/c で、捕食者の平均個体数は a/b である。漁業操業が行われており食用魚も軟骨魚も漁獲されているとすると、その効果は食用魚自然増加率の a を小さくして、軟骨魚自然減少率の d を大きくするように働くと考えることができる[58]。通常の操業量からある時期から操業量が低下したとする。これによって、通常の操業状態と相対的にみると、 a が大きくなり、 d が小さくなったということになる。したがって操業量低下により、被食者の平均個体数は減少し、捕食者の平均個体数が増加するということになる。これがダンコナの疑問に対するヴォルテラの説明である[59]

周期的変動の例編集


カンジキウサギカナダオオヤマネコの捕獲頭数記録 (1845年-1935年)
ロトカ・ヴォルテラの方程式で示された、被食者と捕食者の個体数が位相差を持ちながら一定振動を続ける振る舞いに近いといえる例は、実際の生物においていくつか確認されている。
野外環境における例としては、カナダにおいて、カンジキウサギ[注釈 2]とその捕食者であるカナダオオヤマネコの個体数が長期間にわたって振動していたデータがよく挙げられる[61][62]。2つの個体数振動は、周期はほぼ同じで、位相は少しずれている[60]。ただし、このデータは個体数を直接観測したものではなく、毛皮取引を行っていたハドソン湾会社による1845年から1935年までのカンジキウサギとカナダオオヤマネコの毛皮捕獲記録から、間接的に生息個体数を推定したものである[63]。また、1973年のギルピン(M. E. Gilpin) による解析によれば、これらの個体数変動を相平面上にプロットすると軌道が時計回りとなっており、カンジキウサギがカナダオオヤマネコを捕食していると解釈できる奇妙な結果となっている[63]
環境を制御した飼育実験における例としては、ハフェイカー(C. B. Huffaker) によるコウノシロハダニとその捕食者であるカブリダニによる飼育実験、内田俊郎によるアズキゾウムシとその寄生者であるコマユバチによる飼育実験のデータが挙げられる[64][61]。ハフェイカーの実験では、単純な環境だと捕食が早すぎてどちらかの絶滅が起きてしまった。そのため、橋を設けたり扇風機を回したり環境を複雑にすることで、長期間にわたってそれぞれの個体数が振動しながら共存するデータを得ている[64]

モデルの改良編集

現実にある多くの系を考えると、ロトカ・ヴォルテラの方程式
{\displaystyle {\begin{aligned}{\frac {dx}{dt}}&=ax-bxy,\\{\frac {dy}{dt}}&=cxy-dy\\\end{aligned}}}
は単純過ぎる部分がある。そのため、ロトカ・ヴォルテラの方程式を基礎としつつ、色々なモデルの研究がされてきた[65]。以下はその一例である。
問題点としてまず挙げられるのは、捕食者がいないときの被食者の増殖速度が ax となっており、青天井で増加し続ける点である。実際の系では、ロジスティック方程式のように、ある程度以上増加したら資源不足などが発生し、その増殖速度にブレーキがかかると考えるのが合理的である[66]。これを考慮に入れて、例えば、第1式の右辺第1項 ax をロジスティック型の ax(1 − x/K) に置き換えたモデルが考えられる。ここで K は正の定数で、ロジスティックモデルにおける環境収容力である[7]
また、被食者数に比例して無制限に捕食者増殖速度が増加する点も不自然である。これもある程度以上で飽和すると考えられる[66]。そのため、第1式の右辺第2項 −bxy を −bxy/(1 + hx) などと変形することが考えられる。ここで h は正の定数で、x が増加してもこの項による捕食者1個体当たり増殖速度は b/h で飽和する[67]

ロトカ・ヴォルテラの競争モデル編集

類似のロトカ・ヴォルテラの競争モデル
{\displaystyle {\begin{aligned}{\frac {dx}{dt}}&=r_{1}x\,{\frac {K_{1}-x-a_{21}y}{K_{1}}},\\{\frac {dy}{dt}}&=r_{2}y\,{\frac {K_{2}-y-a_{12}x}{K_{2}}}\end{aligned}}}
に関しては、ロトカ・ヴォルテラの競争方程式を参照。このモデルは、2種の個体群が捕食-被食関係というよりも競争関係にある場合を表している。このモデルも単にロトカ‐ヴォルテラの式などと呼ばれることもある[68]
ロトカ・ヴォルテラの競争モデルの解は捕食者-被食者モデルの場合と様相が異なり、それぞれの個体数 xy が周期変動しながら共存する解は存在しない。係数の値が K1 < K2/a21 かつ K2 < K1/a12 を満たすとき、x と y は平衡点に収束し、それぞれの種が個体数一定で共存する。それ以外の場合にはどちらかの種が絶滅し、残った種の個体数は環境収容力 K1 または K2 に落ち着く[69]

注釈編集

  1. ^ {\displaystyle {\begin{aligned}{\frac {dH}{dt}}&={\frac {\partial H}{\partial x}}{\frac {dx}{dt}}+{\frac {\partial H}{\partial y}}{\frac {dy}{dt}}\\&=\left(c-{\frac {d}{x}}\right)(ax-bxy)+\left(b-{\frac {a}{y}}\right)(cxy-dy)\\&=acx-bcxy-ad+bdy+bcxy-bdy-acx+ad\\&=0\end{aligned}}}
  2. ^ カワリウサギと記す文献もある[60]

出典編集

脚注編集

  1. a b 日本生態学会(編) 2004, p. 141.
  2. ^ 日本生態学会(編) 2015, p. 44.
  3. ^ Steven H. Strogatz 『ストロガッツ 非線形ダイナミクスとカオス―数学的基礎から物理・生物・化学・工学への応用まで』 田中久陽・中尾裕也・千葉逸人訳、丸善出版、2015年、208頁。ISBN 978-4-621-08580-6
  4. a b 巌佐 1990, p. 35.
  5. ^ 日本生態学会(編) 2015, pp. 40–41.
  6. ^ マレー 2014, p. 71.
  7. a b Berryman 1992, p. 1531.
  8. ^ Lotka, A.J., "Contribution to the Theory of Periodic Reaction", Journal of Physical Chemistry A|J. Phys. Chem.14 (3), pp 271–274 (1910)
  9. ^ Goel, N.S. et al., “On the Volterra and Other Non-Linear Models of Interacting Populations”, Academic Press Inc., (1971)
  10. ^ マレー 2014, pp. 65–66.
  11. a b マレー 2014, p. 65.
  12. ^ ハーバーマン 1992, p. 108.
  13. a b c 日本生態学会(編) 2015, p. 42.
  14. ^ 寺本 1997, p. 25.
  15. a b 伊藤 1994, p. 80.
  16. ^ 『「数」の数理生物学』 日本数理生物学会、瀬野裕美(責任編集)、共立出版〈シリーズ 数理生物学要論 巻1〉、2008年、初版、9頁。ISBN 978-4-320-05675-6
  17. ^ Berryman 1992, p. 1534.
  18. ^ ハーバーマン 1992, pp. 108–109.
  19. a b c 日本生態学会(編) 2015, p. 43.
  20. ^ 大串 1994, p. 71.
  21. a b c ハーバーマン 1992, p. 112.
  22. ^ 寺本 1997, p. 77.
  23. a b c マレー 2014, p. 67.
  24. ^ Hirsch et al. 2007, p. 246.
  25. a b ハーバーマン 1992, p. 116.
  26. ^ Hirsch et al. 2007, p. 247.
  27. ^ Hirsch et al. 2007, p. 60.
  28. ^ ハーバーマン 1992, pp. 116–117.
  29. ^ 寺本 1997, p. 21.
  30. ^ ハーバーマン 1992, pp. 71–73.
  31. ^ ハーバーマン 1992, p. 111.
  32. ^ 重定南奈子、日本数理生物学会(編)、1993、「第1章 数理生態学」、『生命・生物科学の数理』、岩波書店〈岩波講座 応用数学 4 [対象 8]〉 ISBN 4-00-010514-0 pp. 8
  33. a b 日本生態学会(編) 2005, p. 33.
  34. a b c ハーバーマン 1992, p. 114.
  35. ^ 大串 1994, pp. 71–72.
  36. a b c 日本生態学会(編) 2004, p. 144.
  37. a b ハーバーマン 1992, p. 119.
  38. a b 寺本 1997, p. 99.
  39. ^ 巌佐 1990, p. 36.
  40. ^ Shagi-Di Shih (1997年12月). “THE PERIOD OF A LOTKA-VOLTERRA SYSTEM”Taiwanese Journal of Mathematics (The Mathematical Society of the Republic of China) 1 (4): 453. ISSN 2224-6851 2016年3月2日閲覧。.
  41. a b Hirsch et al. 2007, p. 248.
  42. a b 日本生態学会(編) 2015, p. 45.
  43. a b 寺本 1997, p. 100.
  44. ^ ハーバーマン 1992, pp. 125–126.
  45. ^ マレー 2014, p. 66.
  46. ^ ハーバーマン 1992, pp. 122.
  47. ^ ハーバーマン 1992, pp. 115–117.
  48. ^ ハーバーマン 1992, p. 117.
  49. ^ 大串 1994, p. 73.
  50. ^ Hirsch et al. 2007, p. 249.
  51. ^ ハーバーマン 1992, pp. 128–129.
  52. ^ 日本生態学会(編) 2015, pp. 45–46.
  53. ^ マレー 2014, pp. 71–73.
  54. ^ 日本生態学会(編) 2015, pp. 46–49.
  55. a b ブラウン 2012, pp. 224–225.
  56. ^ Whittaker 1941, p. 707.
  57. ^ ブラウン 2012, p. 225.
  58. ^ Whittaker 1941, p. 710.
  59. ^ ブラウン 2012, pp. 229–230.
  60. a b 日本生態学会(編) 2015, p. 40.
  61. a b 日本生態学会(編) 2004, pp. 141–142.
  62. ^ ハーバーマン 1992, pp. 107–108.
  63. a b マレー 2014, pp. 68–69.
  64. a b 伊藤 1994, pp. 80–81.
  65. ^ マレー 2014, p. 73.
  66. a b マレー 2014, p. 72.
  67. ^ 日本生態学会(編) 2015, p. 46.
  68. ^ 法則の辞典の解説 ロトカ‐ヴォルテラの式【Lotka-Volterra equation】”. コトバンク. 朝倉書店. 2016年6月11日閲覧。
  69. ^ 巌佐 1990, p. 15.

文献リスト編集

※文献内の複数個所に亘って参照したものを示す。
  • R. ハーバーマン、稲垣宣生(訳)、1992、『生態系の微分方程式』初版、 現代数学社 ISBN 4-7687-0307-0
  • 寺本英、川崎廣吉・重定南奈子・中島久男・東正彦・山村則男(編)、1997、『数理生態学』初版、 朝倉書店 ISBN 4-254-17100-5
  • 巌佐庸、1990、『数理生物学入門―生物社会のダイナミックスを探る』初版、 HBJ出版局 ISBN 4-8337-6011-8
  • 伊藤嘉昭、1994、『生態学と社会―経済・社会系学生のための生態学入門』初版、 東海大学出版会 ISBN 4-486-01272-0
  • 大串隆之、2014、「3章 昆虫の個体群と群集」、『昆虫生態学』初版、 朝倉書店 ISBN 978-4-254-42039-5 pp. 49–98
  • 日本生態学会(編)、巌佐庸・舘田英典(担当編集委員)、2015、『集団生物学』初版、 共立出版〈シリーズ 現代の生態学 1〉 ISBN 978-4-320-05744-9
  • 日本生態学会(編)、2004、『生態学入門』初版、 東京化学同人 ISBN 4-8079-0598-8
  • ジェームス・D・マレー、三村昌泰(総監修)、瀬野裕美・河内一樹・中口悦史・三浦岳(監修)、勝瀬一登・吉田雄紀・青木修一郎・宮嶋望・半田剛久・山下博司(訳)、2014、『マレー数理生物学入門』初版、 丸善出版 ISBN 978-4-621-08674-2
  • Morris W. Hirsch; Stephen Smale; Robert L. Devaney、桐木紳・三波篤朗・谷川清隆・辻井正人(訳)、2007、『力学系入門 原著第2版―微分方程式からカオスまで』初版、 共立出版 ISBN 978-4-320-01847-1
  • M. ブラウン、シュプリンガー・ジャパン(編)、一樂重雄・河原正治・河原雅子・一樂祥子(訳)、2012、『微分方程式 下―その数学と応用』、丸善出版 ISBN 978-4-621-06234-0
  • Alan A. Berryman (1992年10月). “The Orgins and Evolution of Predator-Prey Theory”Ecology (Ecological Society of America) 73 (5): 1530–1535. doi:10.2307/1940005.
  • E. T. Whittaker (1941年12月). “Vito Volterra. 1860-1940”. Obituary Notices of Fellows of the Royal Society (Royal Society) 3 (10): 690–729. JSTOR 769174.

外部リンク編集



ja.wikipedia.org からのvolterra
ヴィト・ヴォルテラ(Vito Volterra、1860年5月3日 - 1940年10月11日) は、イタリアの数学者、物理学者である。数学の分野では解析学に多くの業績を残し積分方程式にヴォルテラ方程式の名が残っている他、結晶の転位の概念を ...

1 Comments:

Blogger yoji said...


ライオン対キリン - ヒーローマザーキリン ライオンアタックから赤ちゃんを救う...

ヴォルテッラ


Volterraによるこの例は、2種類の動物、例えば2種類の魚の共存に関係している。 第1のタイプは、常に十分な量で存在すると仮定した媒体の生成物を供給する。 第2のタイプは、第1のタイプの魚にのみ供給される。 各タイプの数はもちろん整数であり、ジャンプによってのみ変わることができますが、我々の一般的な方法を適用するには、それらを時間の連続関数とみなします。 Ni、Nzによって、第1および第2の種類の動物の数を指定する。 最初の型が単独で存在していた場合、動物数はその数に比例した速度で絶えず増加すると仮定します。 成長係数* iは、死亡率および出生率に依存する。 第二の種が単独で存在する場合、それは次第に餓死するだろう。 このタイプの場合、自然法則は«2> 0です。今では両方の種が一緒に住んでいると仮定します。 そして、N *が大きくなるにつれて、明らかにeiは小さくなる。 私たちは最も簡単な仮定、すなわち、ciがN *に比例して減少すると仮定します。 同様に、e 2はJViに比例して変化すると仮定してもよい。 結果として、e 1、c 2、71、および72がすべて正の定数であるところを書くことができる。 最初の式に72を掛け、2番目の式に71を掛けて加算すると、最初の式にej / JViを掛け、2番目の式にci / JVaを掛け、72#1 + 7l#2 =追加すると、我々は€2Nl +€1 - #2 = - €271 ^ 2 + NON-LINEAR CONSERVATIVE SYSTEMS Y | CHを得る。
POSTED BY YOJI AT 7:46午後

7:58 午後  

コメントを投稿

<< Home