The compounding frequency is the number of times per year (or other unit of time) the accumulated interest is paid out, or capitalized (credited to the account), on a regular basis. The frequency could be yearly, half-yearly, quarterly, monthly, weekly, daily (or not at all, until maturity).
For example, monthly capitalization with annual rate of interest means that the compounding frequency is 12, with time periods measured in months.
The effect of compounding depends on:
- The nominal interest rate which is applied and
- The frequency interest is compounded.
The nominal rate cannot be directly compared between loans with different compounding frequencies. Both the nominal interest rate and the compounding frequency are required in order to compare interest-bearing financial instruments.
To assist consumers compare retail financial products more fairly and easily, many countries require financial institutions to disclose the annual compound interest rate on deposits or advances on a comparable basis. The interest rate on an annual equivalent basis may be referred to variously in different markets as annual percentage rate (APR), annual equivalent rate (AER), effective interest rate, effective annual rate, annual percentage yield and other terms. The effective annual rate is the total accumulated interest that would be payable up to the end of one year, divided by the principal sum.
There are usually two aspects to the rules defining these rates:
- The rate is the annualised compound interest rate, and
- There may be charges other than interest. The effect of fees or taxes which the customer is charged, and which are directly related to the product, may be included. Exactly which fees and taxes are included or excluded varies by country. may or may not be comparable between different jurisdictions, because the use of such terms may be inconsistent, and vary according to local practice.
Calculation of compound interestEdit
The total accumulated value, including the principal sum plus compounded interest , is given by the formula: Fv=Pv(r/n)^nt
where:
- P is the original principal sum
- P' is the new principal sum
- r is the nominal annual interest rate
- n is the compounding frequency
- t is the overall length of time the interest is applied (usually expressed in years).
The total compound interest generated is:
Example 1Edit
Suppose a principal amount of $1,500 is deposited in a bank paying an annual interest rate of 4.3%, compounded quarterly.
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 4, and t = 6:
So the new principal after 6 years is approximately $1,938.84.
Subtracting the original principal from this amount gives the amount of interest received:
Example 2Edit
Suppose the same amount $1,500 is compounded biennially (every 2 years).
Then the balance after 6 years is found by using the formula above, with P = 1500, r = 0.043 (4.3%), n = 1/2 = 0.5 (the interest is compounded every two years), and t = 6:
So, the balance after 6 years is approximately $1,921.24.
The amount of interest received can be calculated by subtracting the principal from this amount.
The interest is less compared with the previous case, as a result of the lower compounding frequency.
Periodic compoundingEdit
The amount function for compound interest is an exponential function in terms of time.
Where:
- = Total time in years
- = Number of compounding periods per year (note that the total number of compounding periods is )
- = Nominal annual interest rate expressed as a decimal. e.g.: 6% = 0.06
- means that nt is rounded down to the nearest integer.
Since the principal is simply a coefficient, it is often dropped for simplicity, and the resulting accumulation function is used instead. Accumulation functions for simple and compound interest are listed below:
Note: A(t) is the amount function and a(t) is the accumulation function.
Continuous compoundingEdit
As n, the number of compounding periods per year, increases without limit, we have the case known as continuous compounding, in which case the effective annual rate approaches an upper limit of er − 1, where e is a mathematical constant that is the base of the natural logarithm.
Continuous compounding can be thought of as making the compounding period infinitesimally small,achieved by taking the limit as n goes to infinity. See definitions of the exponential function for the mathematical proof of this limit. The amount after t periods of continuous compounding can be expressed in terms of the initial amount A0 as
Force of interestEdit
As the number of compounding periods reaches infinity in continuous compounding, the continuous compound interest is referred to as the force of interest .
In mathematics, the accumulation functions are often expressed in terms of e, the base of the natural logarithm. This facilitates the use of calculus to manipulate interest formulae.
Conversely:
- (since ; this can be viewed as a particular case of a product integral).
When the above formula is written in differential equation format, then the force of interest is simply the coefficient of amount of change:
For compound interest with a constant annual interest rate r, the force of interest is a constant, and the accumulation function of compounding interest in terms of force of interest is a simple power of e:
- or
A way of modeling the force of inflation is with Stoodley's formula: where p, r and s are estimated.
Compounding basisEdit
To convert an interest rate from one compounding basis to another compounding basis, use
where r1 is the interest rate with compounding frequency n1, and r2 is the interest rate with compounding frequency n2.
where is the interest rate on a continuous compounding basis, and r is the stated interest rate with a compounding frequency n.
Monthly amortized loan or mortgage paymentsEdit
The interest on loans and mortgages that are amortized—that is, have a smooth monthly payment until the loan has been paid off—is often compounded monthly. The formula for payments is found from the following argument.
Exact formula for monthly paymentEdit
An exact formula for the monthly payment () is
or equivalently
Where:
- = monthly payment
- = principal
- = monthly interest rate
- = number of payment periods
This can be derived by considering how much is left to be repaid after each month.
The Principal remaining after the first month is
i.e. the initial amount has increased less the payment.
If the whole loan is repaid after one month then
- , so
After the second month is left, so
If the whole loan was repaid after two months,
- , so
This equation generalises for a term of n months, . This is a geometric series which has the sum
which can be rearranged to give
This formula for the monthly payment on a U.S. mortgage is exact and is what banks use.
Spreadsheet FormulaEdit
In spreadsheets, the PMT() function is used. The syntax is:
- PMT( interest_rate, number_payments, present_value, future_value,[Type] )
For example, for interest rate of 6% (0.06/12), 25 years * 12 p.a., PV of $150,000, FV of 0, type of 0 gives:
- = PMT( 0.06/12, 25 * 12, 150000, 0, 0 )
- = $966.45
Approximate formula for monthly paymentEdit
A formula that is accurate to within a few percent can be found by noting that for typical U.S. note rates ( and terms =10–30 years), the monthly note rate is small compared to 1: so that the which yields a simplification so that
which suggests defining auxiliary variables
.
is the monthly payment required for a zero interest loan paid off in installments. In terms of these variables the approximation can be written
The function is even: implying that it can be expanded in even powers of .
It follows immediately that can be expanded in even powers of plus the single term:
It will prove convenient then to define
so that which can be expanded:
where the ellipses indicate terms that are higher order in even powers of . The expansion
is valid to better than 1% provided .
Example of mortgage paymentEdit
For a $10,000 mortgage with a term of 30 years and a note rate of 4.5%, payable yearly, we find:
which gives
so that
The exact payment amount is so the approximation is an overestimate of about a sixth of a percent.
チャップリン自伝下310頁#22
やっと彼が着いた。腰布をたくし上げながら、タクシーから降りてくると、たちまちまわりからは、万歳、万歳の声が湧き上った。このごみごみした狭い貧民街で、いま一人の外国人が群衆の歓呼を浴びながら、わびしい小さな家に入って行く。なんともそれは妙な光景だった。彼は三階にあがると、すぐに窓から顔を出乳言通りの群衆に手をふったのである。
ソファに並んで坐ると、たちまちフラッシュの一斉射撃を受けた。わたしは彼の右手に坐わっ教いだ蒔ない相い一″%腱獄「削堀現れい』靱凱わ静なけ餞舞赫砂漱械¨嗅わには蹴に精い婦人が坐っていて、しきりになにかくどくどと話しかけてくる。だが、わたしのほうはガンジーと話す話題のことばかり夢中になって考えているのだから、そんな話など一言も耳にははいっていない。ただフンフンと肯ぐかけだつた。さてヽいよいよ口火を切らなくてはならないのだが、といって、わたしの最近作、どうごらんになりましたか? などと訊きだすのも、相手がガンジーとあっては、変なものにきまっている、――第一、彼が映画など見るかどうか、そのほうがまず問題だった。だが、そのうちに一人のインド婦人が、突然高飛車に例の若い婦人のおしゃべりを封じてしまった。「あなた、いいかげんにおしゃべりおやめになったらどう? チャップリンさんとマハトマとのお話を伺いましょうよ」
ぎっしりつまった部屋の中が、 一瞬シーンとなった。仮面のようなガンジーの顔が、わたしの言葉を待って緊張した。おそらく同時に、全インド人の緊張ででもあったのだろう。わたしは、まずせきばらいを一つした。「もちろん、わたしは、自由を求めるインド、そしてまた、そのために闘っているインドに対して、心からの共鳴を感じていますよ。しかし、あなたのあ
の機械嫌いというのには、どうもちょっとこだわりますね」
彼は軽く笑ってうなずいた。わたしは、なおもあとをつづける。「要するにですよ、機械というものが、世のため、人のためということで使われさえすれば、これは人間を奴隷の状態から解放し、労働時間を短縮し、それによって、知性の向上、生活のよろこびというものを、増進するのに役立つことはきまってるんですからね」
「おっしゃることはよくわかります」彼は静かに言った。「しかしですよ、インドでは、それらの目的を達成する前に、まずイギリスの支配から解放されなければならないのです。現に過去において、わたしたちは機械のおかげでイギリスの奴隷になってしまったのです。したがって、もしその隷属状態から脱却しようと思えば、唯一の途は、まず機械で作られる一切の商品をボイコットすること、それ以外にはないのです。わたしたちインド人が、自分の糸は自分で紡ぎ、自分の布は自分で織るということ、それをすべての国民の愛国的義務であると規定したのも、実はそのためなのです。これがイギリスのような強大国家に対する、わたしたちの攻撃法なのです――もちろん、ほかにもまだ理由はいろいろありますがね。たとえばインドとイギリスとでは、風土がちがいます。習慣や欲望もちがいます。イギリスでは寒いために骨の折れる勤労や複雑な経済が必要でしょう。あなた方にはナイフやフォークなど食器を作る工業が必要でしょうが、わたしたちは指で食べます。そうしたことが、そのままいろんな相違になって現われてくるわけです」
なるほど、よくわかつた。自由のために闘っているインドの闘争、そのいわば用兵作戦における立派な実物教訓を示されたようなものだった。そしてそれは、逆説めいて聞えるかもしれぬが、鉄のような実行意志をもった、きわめて現実的、かつ男性的な理想家によって鼓舞されているのだった。彼はまた、こんなことも言った。最高の独立とは、 一切の不要なものをふりすてることであり、また暴力は、必ず結局において自滅するというのだった。
報道陣が引きあげると、彼は、しばらく残って彼らの礼拝を見て行かないかと言った。まずガンジーが床にあぐらをかいて坐ると、五人のインド人たちも、彼を囲んで丸くなって坐る。ロンドン貧民街のどまんなか、六人の人間が小さな部屋の床に
賜だらをかいて坐っている。サフラン色の太陽がはるか屋根のかなたにみるみる沈んでゆく。敬虔な祈りの声がしずかに流れる。そしてわたしひとりがソフアに坐って、彼らを見おろし漿熟弔げ檄膨雄銀飾つ妙綺勁崎げ度っけ孵熟掛隷れ瑚い凛畔Ⅷ行制げ鑑一改資け篠は凛い和稀榊りの声を聞いていると、すべて霧のように消えてしまうのだった。なんという大きな逆説だろう。